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The brain’s default mode network (DMN) is highly active during
wakeful rest when people are not overtly engaged with a sensory
stimulus or externally oriented task. In multiple contexts, increased
spontaneous DMN activity has been associated with self-reported
episodes of mind-wandering, or thoughts that are unrelated to the
present sensory environment. Mind-wandering characterizes much of
waking life and is often associated with error-prone, variable behav-
ior. However, increased spontaneous DMN activity has also been re-
liably associated with stable, rather than variable, behavior. We
aimed to address this seeming contradiction and to test the hypoth-
esis that single measures of attentional states, either based on self-
report or on behavior, are alone insufficient to account for DMN
activity fluctuations. Thus, we simultaneously measured varying lev-
els of self-reported mind-wandering, behavioral variability, and brain
activity with fMRI during a unique continuous performance task op-
timized for detecting attentional fluctuations. We found that even
though mind-wandering co-occurred with increased behavioral vari-
ability, highest DMN signal levels were best explained by intense
mind-wandering combined with stable behavior simultaneously,
compared with considering either single factor alone. These brain–
behavior–experience relationships were highly consistent within
known DMN subsystems and across DMN subregions. In contrast,
such relationships were absent or in the opposite direction for other
attention-relevant networks (salience, dorsal attention, and fronto-
parietal control networks). Our results suggest that the cognitive pro-
cesses that spontaneous DMN activity specifically reflects are only
partially related to mind-wandering and include also attentional state
fluctuations that are not captured by self-report.

daydreaming | default mode network | sustained attention | spontaneous
thought | resting state

The brain’s default mode network (DMN) has been described
as a distributed set of regions in association cortices showing

increased activity during undirected, awake “resting” states rel-
ative to a wide variety of states that commonly involve externally
oriented attention (1, 2). During undirected, awake life, humans
frequently engage in mind-wandering, self-generated thoughts
unrelated to the immediate sensory world (3). Based on such
observations, researchers have considered that increased spon-
taneous DMN activation could be a neurophysiological correlate
of mind-wandering (4, 5).
Neuroimaging studies that have incorporated self-report mea-

sures suggest a role of the DMN in spontaneous cognition.
Converging evidence from tasks that elicit mind-wandering (6, 7),
interindividual differences in mind-wandering tendencies (8),
and intraindividual fluctuations in self-reports (9–12) suggests
that DMN activity is increased during stimulus-independent, task-
unrelated thought. The DMN is also engaged when subjects
actively think about the past, the future, and the perspectives of
other people, all of which constitute the types of thoughts that
commonly occur during mind-wandering (4).
However, theoretical considerations pose serious challenges to

the notion that increased spontaneous DMN activity reflects

mind-wandering exclusively. The correlational neuroimaging evi-
dence described above does not imply that instances of increased
spontaneous DMN activity signify mind-wandering (the “reverse
inference” problem) (13). Behavioral and self-report outcomes are
imperfect measures of cognition, and the fundamental function of
the DMN may not be captured by any single measure.
Empirical considerations also suggest that a sole focus on

studying mind-wandering is unlikely to unveil a comprehensive
account of DMN function (14). For example, although the DMN
is commonly deactivated during externally oriented tasks re-
quiring cognitive control (15), older adult populations report low
levels of mind-wandering during task performance yet exhibit atten-
uated DMN deactivation (16). Additionally, in certain contexts,
increased DMN activity is time-locked to stimulus changes in the
external environment (17, 18).
Although spontaneous increases of DMN activity are postulated

to reflect mind-wandering, a highly consistent finding is that DMN
activity is higher when ongoing behavior is stable rather than vari-
able (19–21). This finding would be counterintuitive if there were a
one-to-one mapping between mind-wandering intensity and DMN
activity. Mind-wandering occurrence is consistently associated with
variable, rather than stable, behavior (10, 22, 23). Both variable
behavior and mind-wandering are associated with errors in contin-
uous performance tasks (CPTs) (incorrect responses), or “attention
lapses” (20, 24), and DMN activity is elevated preceding such lapses
(20, 25). Thus, it remains mysterious how DMN activity is associ-
ated with both mind-wandering (presumably an error-prone, be-
haviorally variable state) and behavioral stability.
Here, using a unique task paradigm, we simultaneously

assessed fluctuating levels of behavioral variability, self-reported
mind-wandering, and brain activity with fMRI during a CPT
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optimized for detecting these fluctuations. Doing so, we introduce
a platform for going beyond understanding whether increased
DMN activity simply co-occurs with mind-wandering or with be-
havioral stability. Considering both factors simultaneously and
dynamically, we test whether DMN activity fluctuations reflect
cognitive processes that are captured only when both self-reported
and behavioral indices of attentional states are jointly considered.

Results
Linking Self-Reported Attention with Behavior. We recruited 28
healthy adults to perform a modified version of the gradual CPT
(gradCPT) (Fig. S1), known to elicit marked fluctuations of at-
tention (20, 26). Participants viewed gradually changing images of
scenes and were instructed to respond with a button press to city
but not mountain scenes. It was previously shown that slower,
relative to faster, rates of stimulus presentation in other cognitive
tasks are associated with increased mind-wandering and associated
neural activity (27, 28), and so we presented scene transitions at a
slower rate than in previous gradCPT studies (∼1,300 ms instead of
∼800 ms). An experience sampling approach (9) was used to detect
mind-wandering. Blocks of the task lasted 44–60 s, with a “thought-
probe” appearing at the end of the block consisting of a self-report
rating of the degree to which attention was on- or off-task in the
immediately preceding period. In contrast to previous fMRI
studies (9–11), the rating scale was graded rather than discrete,
ranging from 0 (focus was completely on task) to 100 (focus was
completely on something else). Thus, we assessed a wide spectrum
of self-reported attentional states and linear relationships with
behavior and brain activity (Fig. S2A). Subjects completed 36 total
thought-probes in four gradCPT runs (each ∼9 min) with short
breaks between runs (summary behavioral data in Table S1).
Upon task completion, subjects were interviewed about the de-

gree to which their reports of attention off-task were due to (a)
external/sensory distractions (e.g., sounds), (b) task-related inter-
ferences (e.g., task strategizing), and (c) mind-wandering (i.e., task-
unrelated and stimulus-independent thoughts) (1, never; 7, always)
(11, 24). Although there was substantial interindividual variability
in these ratings (see Specificity to Mind-Wandering), mean ratings
for mind-wandering (mean ± SD = 4.4 ± 1.7) were higher than
those for external distractions (2.9 ± 1.9) and task-related in-
terferences (3.2 ± 1.8) (Fig. S2B). Participants reported high
confidence in their abilities to accurately indicate on- or off-task
focus (mean ± SD rating = 5.8 ± 0.96; 0, “not confident at all”; 7,
“extremely confident”).
We next sought to provide behavioral validation of these off-

task self-reports. We predicted that greater off-task attention

ratings would be associated with increased prerating behavioral
variability in the gradCPT, similar to results shown with other
cognitive tasks (10, 29). We focused on reaction time (RT) vari-
ability in the 30-s prerating period (except where indicated) be-
cause relative to shorter prerating time windows, we could use
more samples to calculate RT metrics (23 trials) and acknowledge
uncertainty in the duration of preprobe periods to which partici-
pants’ thought-probe responses referred (but results from shorter
prerating periods were largely similar; Table S2). For consistency
with previous studies on the DMN and RT variability (19, 20), we
report our main analyses based on RT variance (absolute deviance
from the mean) across trials preceding thought probes, but we also
report results with RT coefficient of variation (CoV).
The mean within-subject correlation of off-task rating with RT

variance was positive and significantly greater than zero (P =
0.0009, two-tailed Wilcoxon signed rank test; Fig. S2C), support-
ing the hypothesized relationship (similar results were obtained
with RT CoV; see Table S3). In contrast, off-task rating was not
significantly correlated with mean RT (P = 0.19), and RT variance
was also not significantly correlated with mean RT (P = 0.42),
suggesting that RT variance is an independent and better marker
of self-reported attentional state compared with RT speed.
At the interindividual level, RT variability was positively cor-

related with rate of attention lapses (commission errors; r = 0.67,
P = 9 × 10−5; Fig. S2D), replicating previous work and suggesting
that individuals with increased RT variability have heightened
levels of “out-of-the-zone” attention (20, 26). We extend those
results here, showing that such individuals also report experi-
encing greater off-task attention during task performance; the
mean off-task rating across all thought-probes within subjects
was positively correlated with both RT variability (r = 0.58, P =
0.001) and attention lapse rate (r = 0.37, P = 0.049; Fig. S2D) but
not with mean RT (r = 0.24, P = 0.22).

DMN Fluctuations Reflect Both Self-Reported Attention and Behavioral
Variability. Here, we have shown that increased RT variability is
associated with self-reports of greater off-task attention at both
intra- and interindividual levels, yet decreased RT variability and
off-task self-reports have separately been previously associated
with increased DMN activity (9, 10, 12, 19, 20). To evaluate each
of those relationships in our paradigm, we extracted mean activity
level (percent signal change, %SC) in 30-s prerating periods from
the DMN, defined from a network atlas developed in an in-
dependent, large cohort of subjects, and including gray matter in
the medial prefrontal cortex, posterior cingulate cortex, lateral
parietal areas, portions of the temporal lobe, and cerebellar

A B C

Fig. 1. DMN activity correlates positively with self-reported off-task attention and negatively with behavioral variability. (A) The DMN mask used for extracting
mean activity, including cortical and cerebellar regions. (B) Within-subject Fisher-transformed Pearson correlations between prerating DMN%SC and off-task rating
across 36 trial-blocks within each subject. (C) Within-subject Fisher-transformed Pearson correlations between prerating DMN%SC and prerating RT variance across
36 trial blocks within each subject. In B and C, shaded dark gray denotes SEM, shaded light gray denotes SD, dark line denotes mean across subjects, and dotted line
demarcates zero value. *P < 0.05, two-tailed Wilcoxon signed rank test. DMN, default mode network; RT, reaction time; SC, signal change.
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components (Fig. 1A) (30, 31). We refer to fluctuations in this
extracted brain activity, and in associated self-reported attention
and behavioral variability, as “spontaneous” (32) because each
sample within a given subject occurs during performance of the
same task without any explicit change in cognitive demand or in
the nature of the presented stimuli across prerating periods (the
number of target mountain events was matched).
The mean within-subject correlation of off-task rating with

prerating spontaneous DMN activity was positive and signifi-
cantly greater than zero (P = 0.0009, two-tailed Wilcoxon signed
rank test; Fig. 1B). Additionally, the mean within-subject cor-
relation of prerating RT variance with DMN activity was nega-
tive and significantly less than zero (P = 0.0009) (Fig. 1C; similar
results for RT CoV are shown in Table S3). Thus, our results
suggest that simultaneous relationships of DMN activity with
self-reported off-task attention and with behavioral variability
are in opposite directions.

Multiple Cognitive Factors Explain DMN Fluctuations. Our results
thus far show that spontaneous DMN activity is increased both
during self-reported off-task attention and during periods of
stable behavior, even though off-task attention is associated with
greater behavioral variability. How can DMN activity simulta-
neously relate to two seemingly opposing processes? We em-
pirically addressed this question with linear mixed-effects model
analyses (subjects as random effects and within-subject variables
as fixed effects; see SI Methods) that had several possible out-
comes. For example, DMN activity that is explained by off-task
rating could be dependent on or interacting with behavioral
variability (or vice versa), or DMN activity could be explained by
additive variance of off-task rating and RT variability, with rela-
tive independence.
Our model fits provided unequivocal support for independent,

additive effects of the variances contributed by off-task rating and
RT variability to DMN activity. Compared each to models only
including off-task rating (β = 0.11, t = 3.6, P = 0.0004) or only
including RT variability (β = –0.12, t = –3.8, P = 0.0001), the
combination of off-task rating (β1 = 0.13, t = 4.1, P = 0.0002) and
RT variability (β2 = –0.14, t = –4.3, P = 8.9 × 10−5) in a single model
afforded an improved explanation of DMN signal, with more than
double the variance explained (R2 for combined fixed effects =
0.031) relative to the inclusion of only one predictor (R2 = 0.012 for
off-task rating, R2 = 0.014 for RT variability; see SI Results for
outcomes with RT CoV and mean RT modeled). No significant

off-task rating by RT variability interaction was found (P = 0.15),
further supporting independence of the variances contributed to
DMN activity. A 3D plot (for visualization only) of trial blocks
across all subjects is shown in Fig. 2A (and Fig. 2B for alternative
representation based on median splits of trial block types). These
plots show that the highest DMN activity trial blocks were those
that occurred during combined low RT variance with high self-
reported off-task attention, whereas the lowest DMN activity
trial blocks were those that occurred during combined high RT
variance with high self-reported on-task focus.

Specificity to Mind-Wandering. Previous studies show that before
thought-probe onsets, increased DMN activation levels are most
strongly associated with mind-wandering compared with external
distractions and task-related interferences (10, 11). Mind-wan-
dering and external distraction represent internally and externally
oriented attention, respectively, and opposite relationships with
DMN activity have been shown (11). Thus, using interindividual
differences in postscan ratings of the degree to which off-task
attention reports were due to different factors, we sought to de-
termine whether the relationship between off-task rating and
DMN activity was driven by participants who reported highest
relative levels of mind-wandering (calculated as the ratio of mind-
wandering to external distraction rating). Focusing on the 10-s
prerating period (9, 10), we found a positive correlation between
relative mind-wandering and the correlation strength of off-task
rating vs. DMN activity (ρ = 0.44, P = 0.02) (Fig. 3). To illustrate
the time dependence of this positive relationship, we repeated the
analysis using activity from single whole-brain volumes (ac-
quired every 1.08 s) (SI Results and Fig. S3). These results
suggest temporal specificity of the relationship between DMN
activity and mind-wandering to the period that participants
referred to when they were evaluating their attentional state.

Generalizability Across DMN Subcomponents.Our results reveal that
mean activity within the whole DMN is explained by a combina-
tion of self-reported off-task attention and behavioral stability
levels, but the DMN is comprised of anatomical and functional
subsystems and subregions that could exhibit distinct profiles (4,
33, 34). For example, a given DMN subsystem/subregion could
relate to self-reported attention but not behavioral variability, or
vice versa, an effect that would be washed out when analyzing only
average whole-DMN activity. We thus repeated our analyses of
within-subject correlation of off-task rating vs. DMN activity
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Fig. 2. Self-reported attention and RT variability additively account for DMN activity. (A) 3D plot showing all trial blocks in all subjects with values for off-task
rating (x1; within-subject normalized off-task rating), RT variance (x2), and DMN %SC (y). Color is proportional to mesh surface height, with red areas highest
(high DMN activity) and blue areas lowest (low DMN activity). (B) Bar plots showing mean DMN %SC in trial blocks with four combinations of on-/off-task
attention and high and low RT variance, with on/off (low/high) categories defined based on median split of all trial blocks of all subjects for within-subject
normalized off-task ratings and RT variance. DMN, default mode network; RT, reaction time; SC, signal change.
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within three known subsystems [i.e., the DMN core, the dorso-
medial prefrontal cortex (dmPFC) subsystem, and the medial
temporal lobe (MTL) subsystem (30, 33)].
Within each subsystem, relationships of DMN activity with off-

task attention vs. those with behavioral variability were of similar
magnitude and, as in the whole-DMN analysis, were in opposite
directions (Fig. 4). Higher off-task rating was significantly asso-
ciated with activity in the DMN core (P = 0.001), dmPFC sub-
system (P = 0.006), and MTL subsystem (P = 0.03). Lower RT
variance was significantly associated with activity in the DMN
core (P = 0.0004) and dmPFC subsystem (P = 0.008), whereas
the association with MTL subsystem activity was in the same

direction but was not significant (P = 0.12). An additional analysis
with a more fine-grained parcellation of the DMN (54 subregions)
revealed that subregions that relate most strongly (and positively)
to off-task attention are similar to those that relate most strongly
(and negatively) to behavioral variability (SI Results and Fig. S4).

Specificity Relative to Other Brain Networks. Other networks besides
the DMN could be involved in self-reportable attention and/or
behavioral variability. Increased behavioral variability has pre-
viously been associated with higher activity in dorsal attention and
salience networks (opposite to the DMN pattern) (19–21), and
some but not all previous studies (35, 36) have found increased
mind-wandering associated with activity in the frontoparietal con-
trol network. Additionally, because our measurements occurred in
tandem with sensorimotor processes (due to button pressing), it
was important to ensure that we had captured effects that were
specific to cognitive processes in the DMN. Thus, to test for
specificity of effects in the DMN, we performed control analyses
testing for relationships of self-reported attention and behavioral
variability with (a) dorsal attention, salience, and frontoparietal
network activity and (b) sensorimotor network activity.
Consistent with our predictions, within-subject correlations of

prerating RT variance with salience network (P = 0.0004, two-
tailed Wilcoxon signed rank test) and dorsal attention network
activity (P = 0.01) were significantly greater than zero at the
group level, but there was no significant association between RT
variance and activity in sensorimotor (P = 0.24) or frontoparietal
control (P = 0.73) networks. There were no significant within-
subject correlations of off-task rating with salience (P = 0.55),
dorsal attention (P = 0.80), sensorimotor (P = 0.73), or fronto-
parietal control (P = 0.68) network activity (Fig. S5).

Discussion
Here we present a unique account of the behavioral relevance
of spontaneous DMN activity. We found that simultaneous
consideration of both self-reported attentional fluctuations and
behavioral variability provides a better explanation of DMN
activity than either factor does alone. Spontaneous DMN activity
was greatest during intense mind-wandering coupled with stable

Fig. 3. DMN off-task relationship is driven most strongly by individuals with
high relative levels of self-reported mind-wandering. The degree to which
subjects reported off-task attention due to mind-wandering (relative to
external distractions) is positively correlated with the within-subject Fisher-
transformed Pearson correlation between off-task rating and prerating
DMN %SC averaged within the 10-s prerating period. DMN, default mode
network; SC, signal change.

A B C

Fig. 4. Subsystems of the DMN are associated with self-reported attention and RT variance. For each subsystem, we show within-subject Fisher-transformed
Pearson correlations of prerating %SC with off-task rating (Left) and RT variance (Right) across 36 trial blocks within each subject. (A) The core DMN regions
(yellow). (B) The dmPFC subsystem regions (blue). (C) The MTL subsystem regions (green). In all plots, shaded dark gray denotes SEM, shaded light gray
denotes SD, dark line denotes mean across subjects, and dotted line demarcates zero value. *P < 0.05, two-tailed Wilcoxon signed rank test. DMN, default
mode network; dmPFC, dorsomedial prefrontal cortex; MTL, medial temporal lobe; RT, reaction time; SC, signal change.
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behavior, even though mind-wandering was associated with greater
behavioral variability. These results were consistent across DMN
subsystems and subregions. Furthermore, activity of the salience,
dorsal attention, frontoparietal control, and sensorimotor networks
showed opposite or no such relationships, suggesting specificity of
DMN function in mind-wandering and behavioral variability. Our
results reveal that the cognitive processes reflected by spontaneous
DMN activity are only partially related to mind-wandering and in-
clude also attentional state fluctuations that are not captured by
self-report.
Critically, our findings challenge the notion that increased

spontaneous DMN activity predominantly reflects internal menta-
tion. Moreover, our findings can be used to inform new possible
hypotheses of DMN function that may not have been realized from
studies of mind-wandering or behavioral variability alone. One
possible hypothesis is that spontaneous DMN activity is associated
with both mind-wandering and stable behavior, each independently,
because of separate neurophysiological processes. Increased BOLD
activations are associated with local field potentials and broadband
gamma-wave activity (37, 38), whereas the basis of BOLD deacti-
vations is complex and less well understood (39, 40). Mind-wan-
dering may be time-locked to DMN activation, as supported by
findings indicating that autobiographical memory processes (typi-
cally engaged during mind-wandering) are associated with increased
broadband gamma activity (41). Conversely, stable behavior may be
reflected in reduced DMN deactivation. Spontaneous states of
variable behavior could be associated with DMN deactivation due
to transient “perceived” increases in cognitive demand, consistent
with observed activation in dorsal attention and salience networks.
Thus, our findings here may be explained by additive effects of
increased DMN activation (mind-wandering) and reduced DMN
deactivation (behavioral stability).
Our findings speak to the significance of the “baseline” activity

often studied in neuroimaging experiments, typically a wakeful
resting state (39). During rest, attention may fluctuate among
states comparable to those characterized here. In aging pop-
ulations exhibiting cognitive decline or deficits (e.g., in Alzheimer’s
disease) (4), a common finding is baseline-level DMN hypo-
metabolism while patients are at rest. Such populations also exhibit
increased behavioral variability (42) and decreased self-reported
mind-wandering (43), both of which were associated with decreased
DMN activity in our study, thus providing conceivable behavioral
correlates of low baseline DMN activity with cognitive decline.
Another common finding in such populations is reduced DMN
deactivation (relative to baseline) during tasks requiring active cog-
nitive control (15). Whereas increased cognitive demand typically
results in greater DMN deactivation in healthy individuals (44), a
testable hypothesis is that this deactivation is suppressed in pop-
ulations with a high propensity for behavioral variability and de-
creased (or distorted) mind-wandering because a chronic baseline
state of low DMN activity could decrease the range of deactivation
responsiveness to cognitive demand (45) (see also ref. 16).
Notably, our findings do not rule out the possibility that DMN

fluctuations reflect an overarching function that is indicated by both
stable behavior and mind-wandering. For example, both factors may
be relevant to memory consolidation and/or retrieval. Simultaneous
electrophysiology with fMRI suggests that spontaneous hippocam-
pal ripples are followed by selective activation of the DMN (46).
Hippocampal ripples after learning have been shown to be pre-
dictive of subsequent memory performance (47). States of mind-
wandering often involve rehearsal of learned information to prepare
for the future. Although a link between stable behavior and memory
remains speculative, states of stable behavior could be associated
with a readiness to consolidate information.
A common feature across many contexts is that the DMN is

activated when attention is likely focused away from the imme-
diate sensory environment and toward internally oriented
thoughts (15). We confirm here that DMN activity is increased

with greater mind-wandering intensity. However, the finding that
stable behavior is associated with increased DMN activity, over and
above the association with mind-wandering, is not easily reconcil-
able with an exclusive role of spontaneous DMN activity in in-
ternally focused attention. Consistent with previous studies (22–24,
29), we show that variable, rather than stable, behavior is associated
with self-reported off-task attention both at intra- and interindi-
vidual levels. It remains possible that stable behavior reflects “in the
zone” periods where task performance is high and attentional re-
sources are available for internal mentation that is not reportable
because subjects are not aware of their attentional state.
Conversely, stable behavior and associated DMN activity may

reflect an aspect of externally oriented attention. Several lines of
evidence point toward a nonexclusive role of the DMN in internally
oriented attention. First, as in all other brain networks, DMN ac-
tivity does not stop fluctuating during loss of consciousness (48).
Second, intracranial electrophysiology studies of DMN areas have
shown increased activity immediately at the offset of task perfor-
mance, perhaps too rapidly to reflect mind-wandering (49). Third,
fMRI studies with unique task paradigms suggest that under certain
contexts, increased DMN activity occurs during cognitive processes
that may involve aspects of externally oriented attention (17, 18, 50).
Finally, studies of spontaneous prestimulus activity suggest nuanced
relationships of DMN activity with attentional performance (51,
52). Thus, roles in intrinsic function, internally oriented attention,
and externally oriented attention may need to be reconciled to
provide a full account of DMN function.
Although our results shed light on the functional significance of

fluctuations in DMN activation/deactivation, further work is needed
to uncover the behavioral relevance of dynamic communication
within the DMN and with other networks. Despite the relationships
with activity presented here, mind-wandering and stable behavior
could each have unique relationships with functional network con-
nectivity. Connectivity of the DMN is highly relevant to attentional
fluctuations (12, 21, 34). Simultaneous consideration of both self-
reported mind-wandering and behavior could yield insights into the
significance of time-varying network dynamics.
Virtually every known brain disorder has been associated with

altered DMN (de)activation and/or intrinsic DMN functional
connectivity (15, 53). Often the behavioral significance of these
DMN disruptions is inferred from what is known about the role of
a healthy DMN in cognition. Although our results confirm that the
DMN is engaged during mind-wandering, they also may point
toward a more fundamental function in cognition that should be
considered in healthy as well as clinical populations. Further re-
search into the relationship between the DMN and cognition in
the healthy brain is thus much needed so that a better un-
derstanding of DMN dysfunction in disease can be achieved.

Methods
Twenty-eight healthy, right-handed adults (13 males, 15 females; mean
age ± SD = 26.2 ± 3.8) were included for all final analyses. Participants pro-
vided written informed consent for procedures approved by the Partners
Human Research Institutional Review Board. Subjects were trained to perform
the gradCPT on an initial visit and then returned on another day to complete
neuroimaging on the 3T Siemens CONNECTOM scanner with 64-channel head
coil. In each of four fMRI runs, the gradCPT was presented with nine self-paced
thought-probes (see SI Methods). Procedures for behavioral and neuroimaging
data preprocessing and analyses are detailed in SI Methods.
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